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Received 12 June 1973 

Abstract. It is shown that an analogue of BirkholTs theorem of general relativity exists in a 
scalar-tensor theory of gravitation proposed by Sen and Dunn. Unlike in the Brans-Dicke 
scalar-tensor theory, Birkhoff’s theorem is valid in the present theory irrespective of the 
nature of the scalar field introduced. 

1. Introduction 

Brans and Dicke (1961) have formulated a scalar-tensor theory of gravitation in which 
the tensor field alone is geometrized and the scalar field is alien to the geometry. Recently 
Sen and Dunn (1971) proposed a new scalar-tensor theory of gravitation in a modified 
riemannian manifold in which both the scalar and tensor fields have intrinsic geometrical 
significance. The scalar field, in this theory, is characterized by the function xo = x o ( x i )  
where x i  are coordinates in the four-dimensional Lyra manifold and the tensor field is 
identified with the metric tensor g,,  of the manifold. 

The field equations given by Sen and Dunn for the combined scalar and tensor fields 
are 

where o = 3, Ti j  is the energy-momentum tensor of the field and R is the usual Riemann 
curvature scalar. It was pointed out that these equations are identical with the Brans- 
Dicke equations, namely, 

R. . - ;g . .R  1J I J  = -8@- qj + o@-2(@,i@,j  -+gi j@,k@,k)  + @ -  l(@,i;j - gi jc]@) ( 2 )  

87cT U@=- 
3 +2w (3) 

if the scalar function satisfied the condition 

@,i;j-gijo@ = 0 (4) 
and w = $. However, the gravitational ‘constant’ must be redefined. While Sen and 
Dunn (1971) gave only a series type solution to the static vacuum field equations of the 
scalar-tensor theory in a Lyra manifold, Halford (1972) has obtained a closed-form 
exact solution and has shown that the present theory predicts the same effects within the 
observational limits as Einstein’s theory. 

In Q 2 we discuss Birkhoff s theorem in the Brans-Dicke scalar-tensor theory of 
gravitation following Schucking (1957). In Q 3, we show that the Birkhoffs theorem is 
valid, in the scalar-tensor theory proposed by Sen and Dunn, whatever may be the 
nature of the scalar field introduced. 
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2. Birkhoff’s theorem in Brans-Dicke theory 

It was shown by Birkhoff (1927) that every spherically symmetric solution of the Einstein 
vacuum field equations is static. This fact is known as Birkhoff s theorem. Schucking 
(1957) has shown that this theorem is valid in Jordan’s (1952) extended theory of gravita- 
tion when the gravitational invariant of the theory is independent of time. On similar 
lines we show here, for completeness, that Birkhoff’s theorem holds in the Brans-Dicke 
theory of gravitation when the scalar field introduced in the theory is independent of 
time. 

We consider the spherically symmetric metric in the form 

ds’ = e’ dt’ -e‘ dr’ - r’(df3’ + sin’ f3 d4’) 

A = A(r, t ) ;  
where 

v = v(r, t) 

with the scalar field 

0 = 0(r, t). (7) 

The Brans-Dicke vacuum field equations for the metric (5) read as 

where primes denote partial differentiation with respect to r and dots denote partial 
differentiation with respect to t. When @is a constant this system reduces to the Einstein 
vacuum field equations in the spherically symmetric case and hence Birkhoff s theorem 
follows. 

When the scalar field is a function of r alone, that is, 6 = 0, we have from (11) either 

I = O  
or 

= constant (14) 
0 @,=A 
r’ ’ 

when A = 0 it follows from (8), (10) and (12) 

r r0‘  A 
1 +-(v’-A’)+- = e 

2 0 
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Partial differentiation of (15) with respect to t gives us 
$ 1  = 0 

And when @ = @&' it follows again from (8) that 

2 
v ' -At  = -. 

r 

Substituting this in (1 5) we get 

e' = 0. (18) 
Therefore, in this case, no solution arises. With this Birkhoffs theorem is proved in the 
Brans-Dicke theory of gravitation. 

3. Birkhoff's theorem in scalar-tensor theory in a Lyra manifold 

We consider the spherically symmetric line element in the form given by (5) with the 
scalar function 

xo = xo(r ,  t). (19) 
We shall prove that without assuming time independence of the scalar function xo, the 
metric ( 5 )  is static in the present theory. The vacuum field equations of Sen and Dunn 
for the metric (5) can be written as 

v" i 'v '  v" , '-A') +e- '  (X I' IQ) = - w(xO)- [e- l ( x o y  - e-v((a0)2] (21) e-'(T-- 4 +-+- 4 2r 2 4 4  2 

[e-"(io)' + e - ' ( ~ ~ ' ) ~ ]  

3, e-'- = 0. 
r 

From (23) we have 

I = 0, 

that is, I is independent of time. 

1 ++r(v'-A') = e'. 

From (20) and (22) we have 

Partial differentiation of (21) with respect to t gives us 

+r(+'-A') = e". (26) 

Q' = 0, 

that is, v is independeit of time. Hence Birkhoff s theorem is valid in this theory whatever 
may be the nature of the scalar field. 

Using (24) in (26) we get 
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4. Conclusions 

In the scalar-tensor theory of Brans and Dicke no theorem analogous to Birkhoff s 
theorem in general relativity has been proved. Here we have shown that such a theorem 
is true, for the Brans-Dicke theory, in particular, when the scalar field is independent of 
time. But in the scalar-tensor theory proposed by Sen and Dunn Birkhoff s theorem is 
valid irrespective of the nature of the scalar field. Hence it may be considered that this 
theory is an improved version of the Brans-Dicke theory. 
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